
Malicious Application Dynamic Detection in
Real-Time API Analysis

Shiting Xu, Xinyu Ma
Beijing University of Posts and Telecommunications

Beijing, China
xvshiting@live.com, mxy111@bupt.edu.cn

Yuandong Liu, Qiang Sheng
Beijing University of Posts and Telecommunications

Beijing, China
cyrus.cl@outlook.com,shengqiang@bupt.edu.cn

Abstract—There are various malicious applications (app) in
mobile platform, especially for Android devices, it is difficult to
develop a model directly for malwares, due to the limitation of
application testing samples. In this paper we propose a novel
malicious application detection model RT-MAD for Android
devices: Real-Time Malicious Application Detection. This model
can generate a malicious app space through normal application
modeling by (i) first we develop an Android Real-time API
monitor tool to collect API data for each app running on the
devices, and cleaning them into time series data, (ii) then we
modify Hidden Markov Model (HMM) to train the majority
genres of normal apps, obtaining the normal apps space, (iii) and
finally we use Randomized Real-Valued Negative Selection
(RRNS) to generate a set of likelihood vectors based on the normal
app space, covering all possible malicious applications, thus we get
the malicious app space for malwares detection. We conduct
experiments on HMM training and RRNS malicious apps space
generation, the result shows that we can get precision of 91% for
normal genres of apps in HMM model. However, in some
situation, the malicious apps space generated in RRNS would
cover the normal apps, for the safety of devices, it is acceptable
since our RT-MAD can achieve precision of 91% in malwares
detection.

Keywords—Android Malware Dynamic Detection, API
Monitor, HMM, RRNS

I. INTRODUCTION

n recent years, there has been a gradual improvement in
smartphone adoption. According to IDC [1], Android owned
82.8% of the global smartphone market in 2015 Q2. It also

dominated the smartphone market with 84.8% in 2014 Q2. At
the same time the number of malware is also increasing, it can
cause adverse effect on user’s daily life. Although there are a
number of ways to distinguish between normal and abnormal
applications, but how to detect malicious applications
accurately and efficiently is still an open question [3].

Android malware detection methods are mainly divided into
static analysis and dynamic detections. Machine learning
methods are widely used in both of them [2]. The difference
between static analysis and dynamic detections is the different
information collected, which are used as identifying features in
detection models. For static analysis the approaches are
usually focused on permission requests called by apps [4], and
there are some other methods using both permission and API
calling as features [5]. Semantics-based detection method [7]
also widely used in static analysis. The advantage of static
detection is high efficiency. However, when the application’s
developer adopts the technology of obscured or anti-unpack the
method would be invalid. With respect to dynamic detection, in

our previous work, we developed a method to detect malicious
apps by collecting behaviors data of applications running on
devices [8]. Generally, the dynamic data refers to API invoking,
mobile data connecting and memory consuming etc. In recent
literatures, machine Learning algorithms have been used in
malware detection [6] include: SVM [10] (Support Vector
Machine, SVM), NBM (Naive Bayesian Model, NBM), GBDT
(Gradsaient Boost Decision Tree, GBDT), Decision Tree or
ensemble learning method [11] etc.

There has been many researches on the Real-time dynamic
detection. Iker Burguera and Urko Zurutuza present a Beha-
vior-Based Malware Detection System for Android named
Cro-wdroid [12]. In this system they use a tool available in
Linux called Strace to collect the system calls and then use a
simple 2-means clustering algorithm to distinguish between
normal application and abnormal application. The most
important contribution of this work [12] is the mechanism they
propose for obtaining real traces of application behavior. Luoxu
Min proposes a runtime-based behavior dynamic analysis
detection method [13]. In this method Android application run
on the emulator to generate the run-time log file. Then they use
the sematic analysis and regular expression technology to
analyze the filtered log file. Gerardo Canfora’s approach take
account all the system calls and they also consider sequence of
system call [14]. Xiao Xi presents an approach for detecting
Android malware with system call sequences based on Markov
chains and Back-propagation neural network [15]. Dong
Hang’s method [16] is the first time to adopt HMM (Hidden
Markov Model, HMM) in dynamic detection. In his approach
real-time network’s and memory’s information has been used
to build feature. Y Wei capture the behavior of software, then
use machine learning method to learn the dynamic behavior of
malwares[17]. However, all dynamic detection methods from
above literatures were try to construct detection model based on
malwares, it is difficult to cover all malicious space due to the
inadequate of malicious application.

In this paper, we propose a novel dynamic detection model
named RT-MAD (Real-Time Malicious Application Detection,
RT-MAD), which can use real-time API data of an application
to detect Android malware efficiently and accurately. Instead of
study the malicious applications directly, RT-MAD modeling
the normal applications that frequently used by people, and
generates the abnormal space for malicious application
detection. Fig 1 illustrates the framework of our model.
RT-MAD model consists of five modules, in real-time API data
collection module, we develop a tool to collect run-time API
data of applications, and clean them in data processing module,
generating time sequence data. HMM features space training
module has two components, the one is to build HMM modules

I

2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

978-1-5090-5880-8/16 $31.00 © 2016 IEEE

DOI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.166

787

2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

978-1-5090-5880-8/16 $31.00 © 2016 IEEE

DOI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.166

788

with time sequence data of typical applications, and the other
component is, by using HMM models we built respectively, to
compute likelihood vectors between applications and the
typical applications. Following, we adopt RRNS [18]
(Randomized Real-Valued Negative Selection, RRNS) in
auto-produce malicious vector module to construct a malicious
vector database. Finally, in detection module, we calculate the
minimum Euclidean distance between test application’s
likelihood vector and the malicious vector database, identifying
the current application is a malware or not.

The remainder of this paper is structured as follows. Section
II introduces our model in details. In Section III, we present
experiments and evaluation of our model. Finally, related
works are discussed in Section IV and we conclude our study in
Section V.

II. RT-MAD MODELING

Our RT- MAD model consists of three parts: Data
Pre-processing, HMM Features Space Training and Malicious
Application Detection. For the data pre-processing, we firstly
develop a tool to dynamically collect all the API data invoked
by applications running in the device, and then we write python
scripts to cleaning all the data into a specific form. In HMM
Features Space Training component, we build HMM models
based on the data obtained in the first part, and compute the
likelihood vectors between applications and the typical
applications. In the Malicious Application Detection part, we
demonstrate how to use RRNS algorithm to generate malicious
applications vectors and malwares detection according to its
vector space.

A. Data Pre-processing
Our model is trained by API data of mobile applications,

in order to study the application behaviors, especially for the
normal applications, API invoking is a good way to observe
details of the application actions when it is running. However,
those API data are usually invisible in the operation system
we develop a tool to record the API invoking and its
parameter value, and then sparse log file by time tags.

1) Real-time API data collection
We already have some research experiences [22] on tracing

real-time API calling data on Android device with an open
source project Xposed framework1. Based on this project, we
develop an Android API monitor2, detecting and recording
real-time API data. The structure of this module is manifested
in Fig 2.

When user interacts with an application, the app will invoke
some system API. Our API monitor can hook system API,
insert our code and get the inserted code executed each time
when the API invoked by the application. After we hooked an
API, each time an application invokes it we can run our own
code to modify and record the parameters, and then output the
data into a log file.

The length of time to collect data denoted as ܶ௧ ,
counting in seconds. We denote the set of monitored API as ܵூ and the number of APIs in ܵூ as ݊. We analyze all the
APIs and choose 38 most representative APIs, adding them into ܵூ . Android API monitor can record all the calling of APIs in ܵூ for ܶ௧ seconds in log files. Each record in log files
consists of time stamp, package name and calling API
information etc., log files are sent to our local server through
http protocol.
2) Time series data production

The structure of this part is illustrated in Fig 3. The input
of this part is log files of applications. Time series data
production consists log files slicing by time and API
frequency counting. The output of this component is An m
n Matric ܯ௧.

In log files slicing process we split log file into ݉ slices by
time interval denoted as ∆ݐ. ݉ = ܶ௧/∆ݐ. Time stamp of
each record in log file makes the slice processing much
easier. In API frequency counting process, we compute the
frequency of each API in ܵூ respectively. The ݅ − ℎݐ slice
will generate a vector ܥ, ݅ = 1, … , ݉. The output ܯ௧ is
composed of all ܥ. The pseudo-code of generating ௧ܯ is
given in Table I.

1 https://github.com/rovo89/Xposed
2 The code can be found here:
https://github.com/donggobler/Sensitive_API_Monitor

Fig. 1. Framework of RT-MAD model

Fig. 2. Real-time API data collection component

Fig. 3. Structure of Data Processing

788789

(ܰ)ூܽ݉ = ൝0 ܰ = 01 ܰ ∈ (0, ܰ ூ]2ߜ ∈ ,ூߜ) +∞] (1)

For each API in ܵூ has a unique mapping function ݉ܽூ . The value of (ܰ)ூܽ݉ = 0 means this API does
not occur in the period we monitored, 1 means this API
appear but in a normal frequency, and we denote the line of
the normal number as ߜூ. Excessive invoked of an API can
cause the value of ݉ܽூ(ܰ) = ூߜ .2 in (1) is different
for each mapping function.

B. HMM Features Space Training
According to API invoking data, we describe an application

in four states: normal, slight malicious, malicious, serious
malicious. In this situation, an application can be a combination
of four states in specific time. For example, with time goes by,
the state of an application would transform from normal to
slight malicious and then, in next period, back to normal again.
Applications from same typical class have similar state
transformation, however, we can’t observe four states of
transformation directly. In a hidden Markov model, the
sequence of tokens generated by an HMM gives some
information about the sequence of states. Therefore, by using
HMM, we can deduce application’s hidden states from its API
invoking data, and we can also compute similarity between an
application and a typical class of applications.

HMM Features Space Training model consists of HMM
training and likelihood vectors computing units. The HMM
training unit uses time series data ܯ௧and Baum-Welch[20]
algorithm to build HMM[19]. The likelihood vectors
computing unit uses forward algorithm [19] to calculate
likelihood vector. The structure of HMM Features Space
Training module is given in Fig 4.

We use the compact notation λ௧ = 〈ܵ, ܸ, ,௧ܣ ,௧ܤ Π௧〉 to
indicate the complete parameter set of the ܯܯܪ௧,t ∈ [1, k].
The meaning of each notation is given in Table II. All HMM
have the same ܵ and ܸ.

One application from an app store has always been labeled
with one or more classes. We have surveyed abundant app
stores and choose ܭ classes as fundamental classes (FC). Every
fundamental class has ܬ applications as typical applications
(TA).All TA are normal applications.

HMM Features Space Training module can produce ܭ
HMM for ܭ FC in HMM Training unit. FC’s HMM is built
with ܯ௧ of all ܬ TA belong to it. Every HMM can be described
as a kind of application’s running behaviors. To build an HMM
of a FC, we regard each vector in ܯ௧ as observable outputs,
which can be characterized as signal produced by application.
According to the formula (1), ܸ = {0,1,2} . We set ܵ = 4 and
use Baum-Welch algorithm to optimize ,௧ܣ ௧ܤ .

Likelihood vectors computing unit uses application’s ܯ௧
and ܭ HMM to produce likelihood vector ܮ = [݈ଵ, ݈ଶ, … , ݈]
with forward algorithm. Each element in ܮ represents the
degree of similarity between the application and a T. In
consideration of likelihood value could be ranged in(−∞, +∞), each element in L should be normalized (2). The
higher absolute value of likelihood can represent the better
similarity between application and TC. In (2) when ݈ is close
to ±∞, after normalization, its value close to 1. If ݈ = 0, after
normalization, its value is still zero. After normalization ݈ ∈[0,1), ݅ = 1,2, … , ܮ.݇ = ᇱܮ = ൛1 − ݁ି||ห݈ ∈ ൟ (2)ܮ
C. Malicious Application Detection
The malicious application detection procedure consists of
auto-produce malicious vector process and application vector
testing process. The first process produced malicious likelihood
vector using normal application’s likelihood vector with RRNS
(randomized real-valued negative selection, RRNS). The
application vector testing process detecting malicious
application.
1) Auto-produce malicious vector

The structure of this module is given in Fig . 5. This
module saves all normal application’s likelihood vector into
a database and generate malicious likelihood vector. The
algorithm used in auto-produce malicious vector is RRNS.

TABLE I
DATA PROCESSING ALGORITHM

Input(logfile)
Init Mt=[]
Split logfile into m slices
For each slice in slices:

 C=[]
For each API in SAPI:
 Num=0

 For each record in slice:
 If record contains API:
 Num=Num+1
 End If
 Num=mapAPI(Num) -------Eq(1)

 C= C.append(Num)
Mt.append(C)

Return Mt

Fig. 4. Structure of HMM Features Space Training

TABLE II
NOTATION OF HMMλ௧ = 〈ܵ, ܸ, ,௧ܣ ,௧ܤ Π௧〉ܵ: a set of hidden states of HMM ܸ: possible observed result set ܸ = {0,1,2}ܣ௧: State transition probability matrix ܯܯܪ௧ܤ௧: Observation probability matrix ܯܯܪ௧Π௧: Initial probability matrix of ܯܯܪ௧

Fig. 5. Auto-produce malicious vector module

789790

To construct normal vector database, we need abundant of
normal application’s likelihood vectors. We assume the
number of normal application is ݊݉ݑ . So the size of
normal vector database is ݊݉ݑ × The data type.ܭ
can be txt excel or database system.

RRNS algorithm need normal set ௦ݎ ݎ and other
parameters [18]. ௦ݎ means normal application’s likelihood
vector’s radius. ݎ means malicious application’s likelihood
vector’s radius. RRNS uses normal vector to estimate
volume of malicious space and auto generate a set of
malicious sample that cover the malicious space. The
effective volume covered by a malicious sample with a
radius ݎ is define as[18]:

ௗܸ = ൬2ݎ√ܭ ൰ (3)
If let ܸ௨௦ be the volume of malicious space. A rough

approximation of the number of malicious vector can be given
by [18]: ௨௦݉ݑ݊ = ܸ௨௦ௗܸ (4)

In (4), we can estimate the number of vector in malicious
database and the size of malicious database is ݊݉ݑ௨௦ ×K. The flow of RRNS is given in fig 6.

An optimize function in formula (5) is adopted in the step 4
of figure 6:C(D) = Overlapping(D) + β ∙ SelfCovering(D) (5)Overlapping൫݀, ݀൯ = ݁ିฮௗିௗೕฮమమ (6)Overlapping(D) = ݁ିฮௗିௗೕฮమమஷ , ݅, ݆ = 1 … ௨௦(7)݉ݑ݊

NormCovering(D) = ݁ ି‖ௗି௦‖మ൬ೞାଶ ൰మ
ௗ∈௦∈ௌᇲ (8)

In(5,6,7,8), D represents malicious vector database, ݀ and ݀ are vectors in it. ܵᇱ in our model is normal vector database
and ݏ is vector in it. Our goal in step 4 is to get a minimum C(D). Overlapping(D) approximate measure of overlapping
between different two detectors in D . Minimize Overlapping(D) can larger the distance between two vectors in

D. As the same, minimize NormCovering(D) can also larger
distance between malicious vector and normal vector.
Parameter β can adjust or balance this two function’s weight.
2) Application Vector Testing

In this process, minimum Euclidean distance between testing
application and malicious database is calculated and we
compare the minimum Euclidean distance and radius of
malicious database to detect malicious applications. The
detection algorithm is presented in Table III, and the
application vector testing module is given in Fig 7.

By using likelihood vector ܮ and malicious vector database,
we can judge the software if it is a malware or not. We denote ݀ as minimum Euclidean distance between ܮ and D .
Compare the value of ݀ and ݎ to get an output. If the
output is 1 it represents the test application is malware and 0
means the application is normal.

III. EMPIRICAL EVALUATION

We use 3600 applications in this experiment. We download
3000 normal application from Google Play3 and other app store.
We collect 500 malicious applications in our usual work, and
choose 20 typical classes (TABLE IV), each typical class
includes download 5 typical applications.

We selected 38 important system API of android to be ܵூ
in our Xposed module. APIs we studied here cover behaviors of
network, file, database, camera, contact, message, call and
media etc. In our experiment, we set ܶ௧ = 600 , ݐ∆ = 10,
and then we implement our own RRNS algorithm in Python4.

3 https://play.google.com
4 https://github.com/xvshiting/RRNS

Fig. 6. The flow of RRNS

Fig. 7. The structure of Application Vector Testing

TABLE III
DETECTION ALGORITHM

Input(L,D), :(ݎ
 ݀ = +∞
 For each d in D:
 If ݀> Euclidean(L,d):
 ݀= Euclidean(L,d)
 End If
 If ݀>ݎ:
 Output(0)
 Else

Output(1)
 End If
End

TABLE IV
20 TYPICAL CLASSES OF APPLICATION

Music Photo News Games
Education Books Health Video
productivity Shopping Social travel
weather business Finance Kids
Food Sports Entertainment Utilities

790791

A. RT-MDA Data Preprocessing
We use 5 android devices run our application simultaneously.

Each time we run single application on one devices. To collect
the data comprehensively, we have 5 users interact with those
our testing mobile phones respectively.

For typical applications, each user runs them once, as for
other 3500 applications, we execute one time by a specific user
from 5 users. The details are showed in fig 8.

3600 applications are divided into three parts according to
their function. The partition is given in Fig 9.

2500 of 3000 normal applications are used to build normal
vector database D . 500 normal and 500 malicious applications
are used to be our test application. 100 typical applications are
used to build our HMM. We save all log files into our local
server.

We process all log files into time series data and save them
into txt file. The time series data’s form is given in Fig 10.
Every application’s log file will be ended up in this form. Each
row in Fig 10 represents a Statistical results of an application
behaviors in 10 seconds. Every application has 60 rows in
their time series data file. Adjacent rows represent adjacent
time periods. Each element of one row reflect one API appear
frequency (show up times after mapping function).

B. HMM Evaluation
We use all typical application’s time series data to build 20

HMMs. Each HMM represent a kind of application’s pattern.

Hmmlearn 5package of python is used in this process. This
package can build HMM and can also save and load HMM. We
set hidden state of our all HMM is 4. We also use hmmlearn
package and our HMM to generate original likelihood vector of
2500 applications. The likelihood vector of an application L is
given in Fig 11.

To evaluate our HMM, we use our 20 HMMs to construct a
classifier and evaluate its ability of classification. The
classification method is that given an application, we calculate
its likelihood vector with our HMM, and denote the index of
max element in L as its class (9).class = {index|݈ௗ௫ ≥ ݈ , ∀݈ ∈ (9) {ܮ

We download another 400 applications from app store, each
typical class has 20 of them. We labeled them and use our
HMM classifier to make a prediction. The probability of correct
classification of those applications can evaluate classification
ability of HMM.

The classification precise rate of our HMM classifier is 53%.
For some classes it can up to 72% such as music and games.
The results show that our HMM is effective and can be used to
generate normal likelihood vector. Our HMM can achieve this
performance may relate to the good representative of those
applications have been chosen to build and test the model.

C. Evaluation of Malicious Vector Space Generating
We use RRNS and 1500 normalized likelihood vector of

normal applications to produce our malicious likelihood vector
space. We choose multi group parameters(ݎ, (ݎ in RRNS .
We generate many different malicious likelihood vector spaces
according to different parameters. We use algorithm in table III
to classify labeled test application. According to predict result,
we use precision and recall to evaluate the classification effect
of those Malicious vector space.

Precision is also referred to as positive predictive value. In
classification task, the precision for a class is the number of true
positives divided by the total number of elements labeled as
belonging to the positive class. Its formula is given below (10).Precision = ܶܲܶܲ + (10) ܲܨ

Recall is also referred to as the true positive rate or
sensitivity. The recall for a class is number of true positives
divided by the total number of elements that actually belong to
the positive class(true positives and false negatives). The
formula is given below (11).Recall = ܶܲܶܲ + ܰܨ (11)

The precision and recall of different ݎ and ݎ is showing
in table V. Our model gets good precision and recall rate 92%
and 90% respectively when its ݎ = 0.3, ݎ = 0.4.

5 https://pypi.python.org/pypi/hmmlearn

Fig. 8. Difference between typical and other application

Fig. 9 Partition of 3600 application

Fig. 10 Time series data of one application

Fig. 11 . likelihood vector of application

791792

In paper [21], the author proposes a method using RNS
(Real-Valued Negative Selection, RNS) and static features to
generate malicious vector space. Its detection effect is given in
Table VI.

Paper [16] uses HMM and SVM to detect malware and its
result is given in Table VII.

Compare our result with those two previous works, we find
out that our model has a better performance in malicious
application detection. Contrast with the approach in paper [16]
our method does not need malwares, which solve the difficulty
of collecting malicious applications.

IV. RELATED WORK

In this section we introduce some existing methods of
malicious application detection [16,21] and an approach of
monitor application behavior [22], as well as an optimized RNS
algorithms [18], analyzing how our model distinguishes the
previous work.

Monitor system calling is important for our model. In paper
[22], the author introduced a method using Xposed to monitor
application’s malicious behavior. The author uses Monkey
Runner6 to achieve the goal of auto install, uninstall, click
application. They also give us the solution of using Xposed to
monitor system API and recording those invoking information
of API into log files. They had executed an experiment to
evaluate their model. In their experiment, they find out almost
all sensitive API calling behavior of 1000 applications.

Using HMM in malicious application detection is novel
approach. The author of paper [16] proposed an approach of
how to combine dynamic behavior of android and HMM to
detect malicious application. In tthis paper, the author tries to
build a model for each fundamental behavior such as network
and memory. They also use HMM to get likelihood vector of an
application. Then the author use labeled data to train a SVM.
The trained SVM is used to classify normal and malicious
application. This HMM-SVM detection model got a 90% recall
and 13% false positive rate. This paper gives us a hint on using

6 http://www.android-doc.com/tools/help/monkeyrunner_concepts.html

dynamic behavior. But the disadvantage of this method is that
it need abundant malwares. It’s difficult for us to get newest
malicious application database with the android system update.

To address inadequate malwares problem. In paper [21], they
present an approach of using normal application to detect
malicious behavior. The main idea of this paper is the RNS
algorithm. RNS is widely used in abnormal behavior detection
area. They collect static features of normal application and
filter out useless features to get normal vectors. Then they use
RNS and normal vector to produce malicious vectors. The
minimize distance is calculated between vector of test
application and all malicious vectors. At last, they compare
minimize distance with the radius of malicious vector to make a
classification. They also get a better correct rate 90.8% and low
error rate 9.2%. Using normal application to detect malware is a
novel approach and we also use this method.

We use an optimized RNS algorithm named RRNS. In paper
[18], they propose RRNS and introduce the detail of this
algorithm. RRNS can make a good estimate of optimal number
of detector to cover malicious space. They proposed method is
a randomized algorithm based on Monte Carlo methods. They
also compare RRNS with RNS and find the front one has better
performance.

V. CONCLUSION

In this paper, we introduce a novel malicious application
detection model. The model can collect real-time API data from
an Android device, since the malicious application behavior is
difficult to be modeled, our method gives a way to model the
malicious applications space by studying the normal
application behaviors, and these behaviors are presented in API
data. The experiment we conducted shows that our detection
model can achieve a high precision of typical application
recognition, and by analyzing the relation between the test
application and typical applications, our malicious application
generation algorithm can get a reasonable malwares space,
which can be used for malicious application detection. In this
approach, we do not need the malicious application sample to
train the model, distinguished the previous work. Although in
some cases, the model would group a normal application into
the malicious one, for all the malwares, they are correctly
identified by our model.

Although the performance of our model is not bad in our
experiment, RT-MAD still needs improvement. The high
precision of our model may due to the limitation of samples
used in experiments,and the typical applications we choose
have not been validated by scientific data. In future, we will
focus on classifying applications into different categories by
their API behaviors instead of their content. Then we can
improve the classification accuracy of our HMM. We will
consider add more dynamic feature of Android devices into our
model such as network and memory.

VI. ACKNOWLEDGMENT

The authors would like to thank QiLi and Yanhui Guo for
valuable discussions, and anonymous reviewers for their
constructive feedback. We also acknowledge BUPT National
Engineering Lab for Mobile Network Technologies for
supplying devices and experimental environment.

TABLE V
PRECISION AND RECALL OF DIFFERENT PARAMETERS

Parameter
Group

Number

࢘ ࢈ࢇ࢘ PRECISION RECALL

1 0.3 0.4 92% 90%
2 0.4 0.4 85% 89%
3 0.5 0.3 87% 86%
4 0.5 0.2 90% 84%

TABLE VI
PAPER [21] DETECTION EFFECT

Error rate Correct rate
normal 9.5% 90.5%
malicious 9% 91%
total 9.2% 90.8%

TABLE VII
PAPER [16] DETECTION EFFECT

Recall False positive rate
Total 90% 13%

792793

REFERENCES

[1] Smartphone OS Market Share 2015 Q2 [Online]. Available:
http://www.idc.com/ prodserv/smartphone-os-market-share.jsp

[2] Sahs, Justin, and L. Khan. "A Machine Learning Approach to Android
Malware Detection." Intelligence and Security Informatics Conference
IEEE, 2012:141-147.

[3] Zhou, Yajin, and X. Jiang. "Dissecting Android Malware:
Characterization and Evolution." IEEE Symposium on Security & Privacy
IEEE, 2012:95-109.

[4] Huang, Chun Ying, Y. T. Tsai, and C. H. Hsu. Performance Evaluation
on Permission-Based Detection for Android Malware. Advances in
Intelligent Systems and Applications - Volume 2. Springer Berlin
Heidelberg, 2013:111-120.

[5] Chan, Patrick P. K., and W. K. Song. "Static detection of Android
malware by using permissions and API calls." 1(2015):82-87.

[6] Firdausi, Ivan, et al. "Analysis of Machine learning Techniques Used in
Behavior-Based Malware Detection." International Conference on
Advances in Computing IEEE Computer Society, 2010:201-203.

[7] Feng, Yu, et al. "Apposcopy: semantics-based detection of Android
malware through static analysis." The, ACM Sigsoft International
Symposium 2014:576-587.

[8] Rhee, Junghwan, et al. "Kernel Malware Analysis with Un-tampered and
Temporal Views of Dynamic Kernel Memory." Recent Advances in
Intrusion Detection, International Symposium, RAID 2010, Ottawa,
Ontario, Canada, September 15-17, 2010. Proceedings 2010:178-197.

[9] Channakeshava, Karthik, et al. "High Performance Scalable and
Expressive Modeling Environment to Study Mobile Malware in Large
Dynamic Networks." IEEE International Parallel & Distributed
Processing Symposium IEEE Computer Society, 2011:770-781.

[10] Zhao, Min, et al. "AntiMalDroid: An Efficient SVM-Based Malware
Detection Framework for Android." International Conference
2011:158-166.

[11] Yerima, S. Y., S. Sezer, and I. Muttik. "High accuracy android malware
detection using ensemble learning." Information Security Iet
9.6(2015):313-320.

[12] Burguera, Iker, U. Zurutuza, and S. Nadjm-Tehrani. "Crowdroid:
behavior-based malware detection system for Android." ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices 2011:15-26.

[13] Min, Luo Xu, and Q. H. Cao. "Runtime-Based Behavior Dynamic
Analysis System for Android Malware Detection." Advanced Materials
Research 756-759(2013):2220-2225.

[14] Canfora, Gerardo, et al. "Detecting Android malware using sequences of
system calls." International Workshop on Software Development
Lifecycle for Mobile Esec/fse 2015:13-20.

[15] Xiao, Xi, et al. "Back-propagation neural network on Markov chains from
system call sequences: a new approach for detecting Android malware
with system call sequences." Iet Information Security (2016).

[16] Dong, H., et al. "A detection model of malware behaviors on android."
Journal of Beijing University of Posts and Telecommunications 2014 .

[17] Wei, Yu, et al. "On behavior-based detection of malware on Android
platform." GLOBECOM 2013 - 2013 IEEE Global Communications
Conference 2013:814-819.

[18] Gonzlez, Fabio, et al. "A Randomized Real-Valued Negative Selection."
(2004).

[19] Schuster-Böckler, Benjamin, and A. Bateman. "An Introduction to
Hidden Markov Models." Appendix 3.Appendix 3(2007):4 - 16.

[20] Welch, and R. Lloyd. "Hidden Markov Models and the Baum-Welch
Algorithm." IEEE Information Theory Society Newsletter
53.2(2003):194-211.

[21] XIE Li-xia,ZHAO Bin-bin. “Malware detection of Android system based
on benign samples “ Computer Enginerring and Design 2016, 37(5).

[22] Wang Sai, Guo Yanhui, Wu Qiuxin, Liu Yuandong.” A detection method
of Android application malicious behaviors based on Xposed framework.”
(2015).

793794

