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Abstract—There are various malicious applications (app) in 
mobile platform, especially for Android devices, it is difficult to 
develop a model directly for malwares, due to the limitation of 
application testing samples. In this paper we propose a novel 
malicious application detection model RT-MAD for Android 
devices: Real-Time Malicious Application Detection. This model 
can generate a malicious app space through normal application 
modeling by (i) first we develop an Android Real-time API 
monitor tool to collect API data for each app running on the 
devices, and cleaning them into time series data, (ii) then we 
modify Hidden Markov Model (HMM) to train the majority 
genres of normal apps, obtaining the normal apps space, (iii) and 
finally we use Randomized Real-Valued Negative Selection 
(RRNS) to generate a set of likelihood vectors based on the normal 
app space, covering all possible malicious applications, thus we get 
the malicious app space for malwares detection. We conduct 
experiments on HMM training and RRNS malicious apps space 
generation, the result shows that we can get precision of 91% for 
normal genres of apps in HMM model. However, in some 
situation, the malicious apps space generated in RRNS would 
cover the normal apps, for the safety of devices, it is acceptable 
since our RT-MAD can achieve precision of 91% in malwares 
detection.

Keywords—Android Malware Dynamic Detection, API
Monitor, HMM, RRNS

I. INTRODUCTION

n recent years, there has been a gradual improvement in 
smartphone adoption. According to IDC [1], Android owned 
82.8% of the global smartphone market in 2015 Q2. It also 

dominated the smartphone market with 84.8% in 2014 Q2. At 
the same time the number of malware is also increasing, it can 
cause adverse effect on user’s daily life. Although there are a
number of ways to distinguish between normal and abnormal 
applications, but how to detect malicious applications 
accurately and efficiently is still an open question [3].

Android malware detection methods are mainly divided into 
static analysis and dynamic detections. Machine learning 
methods are widely used in both of them [2]. The difference 
between static analysis and dynamic detections is the different 
information collected, which are used as identifying features in 
detection models. For static analysis the approaches are
usually focused on permission requests called by apps [4], and 
there are some other methods using both permission and API 
calling as features [5]. Semantics-based detection method [7]
also widely used in static analysis. The advantage of static 
detection is high efficiency. However, when the application’s
developer adopts the technology of obscured or anti-unpack the
method would be invalid. With respect to dynamic detection, in 

our previous work, we developed a method to detect malicious 
apps by collecting behaviors data of applications running on 
devices [8]. Generally, the dynamic data refers to API invoking,
mobile data connecting and memory consuming etc. In recent 
literatures, machine Learning algorithms have been used in
malware detection [6] include: SVM [10] (Support Vector 
Machine, SVM), NBM (Naive Bayesian Model, NBM), GBDT
(Gradsaient Boost Decision Tree, GBDT), Decision Tree or 
ensemble learning method [11] etc.

There has been many researches on the Real-time dynamic 
detection. Iker Burguera and Urko Zurutuza present a Beha-
vior-Based Malware Detection System for Android named 
Cro-wdroid [12]. In this system they use a tool available in 
Linux called Strace to collect the system calls and then use a
simple 2-means clustering algorithm to distinguish between 
normal application and abnormal application. The most 
important contribution of this work [12] is the mechanism they
propose for obtaining real traces of application behavior. Luoxu 
Min proposes a runtime-based behavior dynamic analysis 
detection method [13]. In this method Android application run 
on the emulator to generate the run-time log file. Then they use 
the sematic analysis and regular expression technology to 
analyze the filtered log file. Gerardo Canfora’s approach take 
account all the system calls and they also consider sequence of 
system call [14]. Xiao Xi presents an approach for detecting 
Android malware with system call sequences based on Markov 
chains and Back-propagation neural network [15]. Dong
Hang’s method [16] is the first time to adopt HMM (Hidden 
Markov Model, HMM) in dynamic detection. In his approach 
real-time network’s and memory’s information has been used 
to build feature. Y Wei capture the behavior of software, then 
use machine learning method to learn the dynamic behavior of 
malwares[17]. However, all dynamic detection methods from
above literatures were try to construct detection model based on 
malwares, it is difficult to cover all malicious space due to the 
inadequate of malicious application.

In this paper, we propose a novel dynamic detection model 
named RT-MAD (Real-Time Malicious Application Detection, 
RT-MAD), which can use real-time API data of an application
to detect Android malware efficiently and accurately. Instead of 
study the malicious applications directly, RT-MAD modeling 
the normal applications that frequently used by people, and 
generates the abnormal space for malicious application 
detection. Fig 1 illustrates the framework of our model.
RT-MAD model consists of five modules, in real-time API data 
collection module, we develop a tool to collect run-time API 
data of applications, and clean them in data processing module, 
generating time sequence data. HMM features space training
module has two components, the one is to build HMM modules 
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with time sequence data of typical applications, and the other 
component is, by using HMM models we built respectively, to 
compute likelihood vectors between applications and the 
typical applications. Following, we adopt RRNS [18]
(Randomized Real-Valued Negative Selection, RRNS) in 
auto-produce malicious vector module to construct a malicious 
vector database. Finally, in detection module, we calculate the 
minimum Euclidean distance between test application’s
likelihood vector and the malicious vector database, identifying 
the current application is a malware or not.

The remainder of this paper is structured as follows. Section 
II introduces our model in details. In Section III, we present 
experiments and evaluation of our model. Finally, related 
works are discussed in Section IV and we conclude our study in 
Section V.

II. RT-MAD MODELING

Our RT- MAD model consists of three parts: Data 
Pre-processing, HMM Features Space Training and Malicious 
Application Detection. For the data pre-processing, we firstly 
develop a tool to dynamically collect all the API data invoked 
by applications running in the device, and then we write python 
scripts to cleaning all the data into a specific form. In HMM 
Features Space Training component, we build HMM models 
based on the data obtained in the first part, and compute the 
likelihood vectors between applications and the typical 
applications. In the Malicious Application Detection part, we 
demonstrate how to use RRNS algorithm to generate malicious 
applications vectors and malwares detection according to its
vector space.

A. Data Pre-processing
Our model is trained by API data of mobile applications, 

in order to study the application behaviors, especially for the 
normal applications, API invoking is a good way to observe 
details of the application actions when it is running. However, 
those API data are usually invisible in the operation system
we develop a tool to record the API invoking and its 
parameter value, and then sparse log file by time tags. 

1) Real-time API data collection 
We already have some research experiences [22] on tracing

real-time API calling data on Android device with an open 
source project Xposed framework1. Based on this project, we 
develop an Android API monitor2, detecting and recording 
real-time API data. The structure of this module is manifested
in Fig 2.

When user interacts with an application, the app will invoke
some system API. Our API monitor can hook system API,
insert our code and get the inserted code executed each time
when the API invoked by the application. After we hooked an 
API, each time an application invokes it we can run our own 
code to modify and record the parameters, and then output the 
data into a log file.

The length of time to collect data denoted as ܶ௧ ,
counting in seconds. We denote the set of monitored API as ܵூ and the number of APIs in ܵூ as ݊. We analyze all the 
APIs and choose 38 most representative APIs, adding them into ܵூ .  Android API monitor can record all the calling of APIs in ܵூ for ܶ௧ seconds in log files. Each record in log files
consists of time stamp, package name and calling API 
information etc., log files are sent to our local server through
http protocol.
2) Time series data production

The structure of this part is illustrated in Fig 3. The input 
of this part is log files of applications. Time series data 
production consists log files slicing by time and API 
frequency counting. The output of this component is An m
n Matric ܯ௧.

In log files slicing process we split log file into ݉ slices by 
time interval denoted as ∆ݐ. ݉ = ܶ௧/∆ݐ. Time stamp of 
each record in log file makes the slice processing much 
easier. In API frequency counting process, we compute the
frequency of each API in ܵூ respectively. The ݅ − ℎݐ slice 
will generate a vector ܥ, ݅ = 1, … , ݉. The output  ܯ௧ is 
composed of all ܥ. The pseudo-code of generating ௧ܯ is 
given in Table I.

1 https://github.com/rovo89/Xposed
2 The code can be found here: 
https://github.com/donggobler/Sensitive_API_Monitor

Fig. 1.   Framework of RT-MAD model

Fig. 2.  Real-time API data collection component

Fig. 3.  Structure of Data Processing 
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(ܰ)ூܽ݉ = ൝0                          ܰ = 01              ܰ ∈ (0, ܰ         ூ]2ߜ ∈ ,ூߜ) +∞] (1)

For each API in ܵூ has a unique mapping function ݉ܽூ . The value of (ܰ)ூܽ݉ = 0 means this API does 
not occur in the period we monitored, 1 means this API
appear but in a normal frequency, and we denote the line of 
the normal number as  ߜூ. Excessive invoked of an API can 
cause the value of ݉ܽூ(ܰ) = ூߜ .2 in (1) is different 
for each mapping function.

B. HMM Features Space Training 
According to API invoking data, we describe an application 

in four states: normal, slight malicious, malicious, serious 
malicious. In this situation, an application can be a combination 
of four states in specific time. For example, with time goes by, 
the state of an application would transform from normal to 
slight malicious and then, in next period, back to normal again. 
Applications from same typical class have similar state 
transformation, however, we can’t observe four states of 
transformation directly. In a hidden Markov model, the 
sequence of tokens generated by an HMM gives some 
information about the sequence of states. Therefore, by using 
HMM, we can deduce application’s hidden states from its API 
invoking data, and we can also compute similarity between an 
application and a typical class of applications.

HMM Features Space Training model consists of HMM 
training and likelihood vectors computing units. The HMM 
training unit uses time series data ܯ௧and Baum-Welch[20]
algorithm to build HMM[19]. The likelihood vectors
computing unit uses forward algorithm [19] to calculate 
likelihood vector. The structure of HMM Features Space 
Training module is given in Fig 4.

We use the compact notation λ௧ = 〈ܵ, ܸ, ,௧ܣ ,௧ܤ Π௧〉 to 
indicate the complete parameter set of the ܯܯܪ௧,t ∈ [1, k].
The meaning of each notation is given in Table II. All HMM 
have the same ܵ and ܸ.

One application from an app store has always been labeled
with one or more classes. We have surveyed abundant app 
stores and choose ܭ classes as fundamental classes (FC). Every 
fundamental class has ܬ applications as typical applications 
(TA).All TA are normal applications.

HMM Features Space Training module can produce ܭ
HMM for ܭ FC in HMM Training unit. FC’s HMM is built
with ܯ௧ of all ܬ TA belong to it. Every HMM can be described
as a kind of application’s running behaviors. To build an HMM
of a FC, we regard each vector in ܯ௧ as observable outputs,
which can be characterized as signal produced by application.  
According to the formula (1), ܸ = {0,1,2} . We set ܵ = 4 and 
use Baum-Welch algorithm to optimize ,௧ܣ ௧ܤ .

Likelihood vectors computing unit uses application’s  ܯ௧
and ܭ HMM to produce likelihood vector ܮ = [݈ଵ, ݈ଶ, … , ݈]
with forward algorithm. Each element in ܮ represents the 
degree of  similarity between the application and a T. In 
consideration of likelihood value could  be ranged in(−∞, +∞), each element in L should be normalized (2). The
higher absolute value of likelihood can represent the better
similarity between application and TC. In (2) when ݈ is close
to ±∞, after normalization, its value close to 1. If  ݈ = 0, after
normalization, its value is still zero. After normalization ݈ ∈[0,1), ݅ = 1,2, … , ܮ.݇ = ᇱܮ = ൛1 − ݁ି||ห݈ ∈ ൟ     (2)ܮ
C. Malicious Application Detection
The malicious application detection procedure consists of 
auto-produce malicious vector process and application vector 
testing process. The first process produced malicious likelihood 
vector using normal application’s likelihood vector with RRNS 
(randomized real-valued negative selection, RRNS). The 
application vector testing process detecting malicious 
application.
1) Auto-produce malicious vector

The structure of this module is given in Fig . 5. This 
module saves all normal application’s likelihood vector into 
a database and generate malicious likelihood vector. The 
algorithm used in auto-produce malicious vector is RRNS.

TABLE I
DATA PROCESSING ALGORITHM

Input(logfile)
Init Mt=[]
Split logfile into m slices
For each slice in slices:

       C=[]
For each API in SAPI:
      Num=0

          For each record in slice:
                   If record contains API:
                        Num=Num+1
                   End If
          Num=mapAPI(Num)    -------Eq(1)

      C= C.append(Num)
Mt.append(C)

Return Mt

Fig. 4.  Structure of HMM Features Space Training 

TABLE II
NOTATION OF HMMλ௧ = 〈ܵ, ܸ, ,௧ܣ ,௧ܤ Π௧〉ܵ: a set of hidden states of HMM  ܸ: possible observed result set     ܸ = {0,1,2}ܣ௧: State transition probability matrix ܯܯܪ௧ܤ௧: Observation probability matrix ܯܯܪ௧Π௧: Initial probability matrix of ܯܯܪ௧

Fig. 5.  Auto-produce malicious vector module
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To construct normal vector database, we need abundant of 
normal application’s likelihood vectors. We assume the 
number of normal application is ݊݉ݑ . So the size of 
normal vector  database is  ݊݉ݑ   × The data type.ܭ  
can be txt excel or database system.

RRNS algorithm need normal set ௦ݎ ݎ and other
parameters [18]. ௦ݎ means normal application’s likelihood 
vector’s radius. ݎ means malicious application’s likelihood 
vector’s radius. RRNS uses normal vector to estimate
volume of malicious space and auto generate a set of 
malicious sample that cover the malicious space. The 
effective volume covered by a malicious sample with a 
radius ݎ is define as[18]:

ௗܸ = ൬2ݎ√ܭ ൰     (3)
If let ܸ௨௦ be the volume of  malicious space. A rough 

approximation of the number of malicious vector can be given 
by [18]: ௨௦݉ݑ݊ =  ܸ௨௦ௗܸ    (4)

In (4), we can estimate the number of vector in malicious 
database and the size of malicious database is ݊݉ݑ௨௦ ×K. The flow of RRNS is given in fig 6.

An optimize function in formula (5) is adopted in the step 4
of figure 6:C(D) = Overlapping(D) + β ∙ SelfCovering(D)     (5)Overlapping൫݀, ݀൯ = ݁ିฮௗିௗೕฮమమ            (6)Overlapping(D) =  ݁ିฮௗିௗೕฮమమஷ , ݅, ݆ = 1 … ௨௦(7)݉ݑ݊

NormCovering(D) =   ݁ ି‖ௗି௦‖మ൬ೞାଶ ൰మ
ௗ∈௦∈ௌᇲ            (8)

In(5,6,7,8), D represents malicious vector database, ݀ and ݀ are vectors in it. ܵᇱ in our model is normal vector database 
and ݏ is vector in it. Our goal in step 4 is to get a minimum C(D). Overlapping(D) approximate measure of overlapping 
between different two detectors in D . Minimize Overlapping(D) can larger the distance between two vectors in 

D. As the same, minimize NormCovering(D) can also larger 
distance between malicious vector and normal vector.
Parameter β can adjust or balance this two function’s weight.
2) Application Vector Testing

In this process, minimum Euclidean distance between testing 
application and malicious database is calculated and we 
compare the minimum Euclidean distance and radius of 
malicious database to detect malicious applications. The 
detection algorithm is presented in Table III, and the 
application vector testing module is given in Fig 7.

By using likelihood vector ܮ and malicious vector database, 
we can judge the software if it is a malware or not. We denote ݀ as minimum Euclidean distance between ܮ and D .
Compare the value of ݀ and ݎ to get an output. If the 
output is 1 it represents the test application is malware and 0 
means the application is normal.

III. EMPIRICAL EVALUATION

We use 3600 applications in this experiment. We download 
3000 normal application from Google Play3 and other app store. 
We collect 500 malicious applications in our usual work, and 
choose 20 typical classes (TABLE IV), each typical class 
includes download 5 typical applications.

We selected 38 important system API of android to be ܵூ
in our Xposed module. APIs we studied here cover behaviors of 
network, file, database, camera, contact, message, call and 
media etc. In our experiment, we set ܶ௧ = 600 , ݐ∆ = 10,
and then we implement our own RRNS algorithm in Python4.

3 https://play.google.com
4 https://github.com/xvshiting/RRNS

Fig. 6.  The flow of RRNS

Fig. 7.  The structure of Application Vector Testing

TABLE III
DETECTION ALGORITHM

Input(L,D), :(ݎ
          ݀ = +∞
        For each d in D:
                If   ݀> Euclidean(L,d):
                                ݀= Euclidean(L,d)
                  End If
        If  ݀>ݎ:
                 Output(0)
        Else  

Output(1)
        End If
End

TABLE IV
20 TYPICAL CLASSES OF APPLICATION

Music Photo News Games
Education Books Health Video
productivity Shopping Social travel
weather business Finance Kids
Food Sports Entertainment Utilities
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A. RT-MDA Data Preprocessing
We use 5 android devices run our application simultaneously.

Each time we run single application on one devices. To collect 
the data comprehensively, we have 5 users interact with those 
our testing mobile phones respectively. 

For typical applications, each user runs them once, as for 
other 3500 applications, we execute one time by a specific user 
from 5 users. The details are showed in fig 8.

3600 applications are divided into three parts according to 
their function. The partition is given in Fig 9.

2500 of 3000 normal applications are used to build normal 
vector database D . 500 normal and 500 malicious applications 
are used to be our test application. 100 typical applications are 
used to build our HMM. We save all log files into our local 
server.

We process all log files into time series data and save them 
into txt file. The time series data’s form is given in Fig 10.
Every application’s log file will be ended up in this form. Each 
row in Fig 10 represents a Statistical results of an application
behaviors in 10 seconds. Every application has 60 rows in 
their time series data file. Adjacent rows represent adjacent 
time periods. Each element of one row reflect one API appear 
frequency (show up times after mapping function).

B. HMM Evaluation
We use all typical application’s time series data to build 20 

HMMs. Each HMM represent a kind of application’s pattern. 

Hmmlearn 5package of python is used in  this process. This 
package can build HMM and can also save and load HMM. We 
set hidden state of our all HMM is 4. We also use hmmlearn 
package and our HMM to generate original likelihood vector of 
2500 applications. The likelihood vector of an application L is 
given in Fig 11.

To evaluate our HMM, we use our 20 HMMs to construct a 
classifier and evaluate its ability of classification. The 
classification method is that given an application, we calculate 
its likelihood vector with our HMM, and denote the index of 
max element in L as its class (9).class = {index|݈ௗ௫ ≥ ݈ , ∀݈ ∈ (9) {ܮ

We download another 400 applications from app store, each 
typical class has 20 of them. We labeled them and use our 
HMM classifier to make a prediction. The probability of correct 
classification of those applications can evaluate classification 
ability of HMM.  

The classification precise rate of our HMM classifier is 53%.
For some classes it can up to 72% such as music and games. 
The results show that our HMM is effective and can be used to 
generate normal likelihood vector. Our HMM can achieve this 
performance may relate to the good representative of those 
applications have been chosen to build and test the model.

C. Evaluation of Malicious Vector Space Generating 
We use RRNS and 1500 normalized likelihood vector of 

normal applications to produce our malicious likelihood vector 
space. We choose multi group parameters(ݎ, (ݎ in RRNS .
We generate many different malicious likelihood vector spaces
according to different parameters. We use algorithm in table III 
to classify labeled test application. According to predict result, 
we use precision and recall to evaluate the classification effect
of those Malicious vector space.

Precision is also referred to as positive predictive value. In 
classification task, the precision for a class is the number of true 
positives divided by the total number of elements labeled as 
belonging to the positive class. Its formula is given below (10).Precision = ܶܲܶܲ + (10)     ܲܨ

Recall is also referred to as the true positive rate or 
sensitivity. The recall for a class is number of true positives 
divided by the total number of elements that actually belong to 
the positive class(true positives and false negatives). The 
formula is given below (11).Recall = ܶܲܶܲ + ܰܨ     (11)

The precision and recall of different ݎ and ݎ is showing 
in table  V. Our model gets good precision and recall rate 92% 
and 90% respectively when its ݎ = 0.3, ݎ = 0.4.

5 https://pypi.python.org/pypi/hmmlearn

Fig. 8.  Difference between typical and other application 

Fig. 9 Partition of 3600 application

Fig. 10 Time series data of one application

Fig. 11 . likelihood vector of application
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In paper [21], the author proposes a method using RNS
(Real-Valued Negative Selection, RNS) and static features to 
generate malicious vector space. Its detection effect is given in 
Table VI.

Paper [16] uses HMM and SVM to detect malware and its 
result is given in Table VII.

Compare our result with those two previous works, we find 
out that our model has a better performance in malicious 
application detection. Contrast with the approach in paper [16] 
our method does not need malwares, which solve the difficulty
of collecting malicious applications.

IV. RELATED WORK

In this section we introduce some existing methods of 
malicious application detection [16,21] and an approach of 
monitor application behavior [22], as well as an optimized RNS 
algorithms [18], analyzing how our model distinguishes the 
previous work.

Monitor system calling is important for our model. In paper 
[22], the author introduced a method using Xposed to monitor 
application’s malicious behavior. The author uses Monkey
Runner6 to achieve the goal of auto install, uninstall, click 
application. They also give us the solution of using Xposed to 
monitor system API and recording those invoking information 
of API into log files. They had executed an experiment to 
evaluate their model. In their experiment, they find out almost 
all sensitive API calling behavior of 1000 applications.

Using HMM in malicious application detection is novel 
approach. The author of paper [16] proposed an approach of 
how to combine dynamic behavior of android and HMM to 
detect malicious application. In tthis paper, the author tries to 
build a model for each fundamental behavior such as network 
and memory. They also use HMM to get likelihood vector of an 
application. Then the author use labeled data to train a SVM.
The trained SVM is used to classify normal and malicious 
application. This HMM-SVM detection model got a 90% recall 
and 13% false positive rate. This paper gives us a hint on using

6 http://www.android-doc.com/tools/help/monkeyrunner_concepts.html

dynamic behavior.  But the disadvantage of this method is that 
it need abundant malwares. It’s difficult for us to get newest 
malicious application database with the android system update.

To address inadequate malwares problem. In paper [21], they 
present an approach of using normal application to detect 
malicious behavior. The main idea of this paper is the RNS 
algorithm. RNS is widely used in abnormal behavior detection 
area. They collect static features of normal application and 
filter out useless features to get normal vectors. Then they use 
RNS and normal vector to produce malicious vectors. The 
minimize distance is calculated between vector of test 
application and all malicious vectors. At last, they compare 
minimize distance with the radius of malicious vector to make a 
classification. They also get a better correct rate 90.8% and low 
error rate 9.2%. Using normal application to detect malware is a 
novel approach and we also use this method.

We use an optimized RNS algorithm named RRNS. In paper 
[18], they propose RRNS and introduce the detail of this 
algorithm. RRNS can make a good estimate of optimal number 
of detector to cover malicious space. They proposed method is 
a randomized algorithm based on Monte Carlo methods. They 
also compare RRNS with RNS and find the front one has better 
performance. 

V. CONCLUSION

In this paper, we introduce a novel malicious application 
detection model. The model can collect real-time API data from 
an Android device, since the malicious application behavior is 
difficult to be modeled, our method gives a way to model the 
malicious applications space by studying the normal 
application behaviors, and these behaviors are presented in API 
data. The experiment we conducted shows that our detection 
model can achieve a high precision of typical application 
recognition, and by analyzing the relation between the test 
application and typical applications, our malicious application 
generation algorithm can get a reasonable malwares space, 
which can be used for malicious application detection. In this 
approach, we do not need the malicious application sample to 
train the model, distinguished the previous work. Although in 
some cases, the model would group a normal application into 
the malicious one, for all the malwares, they are correctly 
identified by our model.

Although the performance of our model is not bad in our 
experiment, RT-MAD still needs improvement. The high 
precision of our model may due to the limitation of samples 
used in experiments,and the typical applications we choose 
have not been validated by scientific data. In future, we will 
focus on classifying applications into different categories by 
their API behaviors instead of their content. Then we can 
improve the classification accuracy of our HMM. We will 
consider add more dynamic feature of Android devices into our 
model such as network and memory.

VI. ACKNOWLEDGMENT

The authors would like to thank QiLi and Yanhui Guo for 
valuable discussions, and anonymous reviewers for their 
constructive feedback. We also acknowledge BUPT National 
Engineering Lab for Mobile Network Technologies for 
supplying devices and experimental environment.

TABLE V
PRECISION AND RECALL OF DIFFERENT PARAMETERS

Parameter
Group

Number

࢘ ࢈ࢇ࢘ PRECISION RECALL

1 0.3 0.4 92% 90%
2 0.4 0.4 85% 89%
3 0.5 0.3 87% 86%
4 0.5 0.2 90% 84%

TABLE VI
PAPER [21] DETECTION EFFECT

Error rate Correct rate
normal 9.5% 90.5%
malicious 9% 91%
total 9.2% 90.8%

TABLE VII
PAPER [16] DETECTION EFFECT

Recall False positive rate
Total 90% 13%
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